sábado, 2 de septiembre de 2017

Fuerzas internas de la Tierra (2do. Secundaria)

Resultado de imagen para recursos didacticos

Estructura

La estructura de la tierra podría establecerse según dos criterios diferentes. Según su composición química, el planeta puede dividirse en corteza, manto y núcleo (externo e interno); según sus propiedades geológicas se definen la litosfera, la astenosfera, la mesosfera y el núcleo (externo e interno).

La división de la tierra en capas ha sido determinada indirectamente utilizando el tiempo que tardan en viajar las ondas sísmicas reflejadas y refractadas, creadas por terremotos. Las ondas transversales (S, o secundarias) no pueden atravesar el núcleo, ya que necesitan un material viscoso o elástico para propagarse, mientras que la velocidad de propagación es diferente en las demás capas. Los cambios en dicha velocidad producen una refracción debido a la ley de Snell. Las reflexiones están causadas por un gran incremento en la velocidad sísmica (velocidad de propagación) y son parecidos a la luz reflejada en un espejo.

Capas definidas por su composición


Vista esquemática del interior de la Tierra. 1: Corteza continental - 2: Corteza oceánica - 3: Manto superior - 4: Manto inferior - 5: Núcleo externo - 6: Núcleo interno - A: Discontinuidad de Mohorovičić - B:- Discontinuidad de Gutenberg - C: Discontinuidad de Wiechert-Lehmann.

Corteza


La corteza terrestre es una capa comparativamente fina; su grosor oscila entre 11 km en las dorsales oceánicas y 70 km en las grandes cordilleras terrestres como los Andes y el Himalaya.

Los fondos de las grandes cuencas oceánicas están formados por la corteza oceánica, con un espesor medio de 7 km; está compuesta por rocas máficas (silicatos de hierro y magnesio) con una densidad media de 3,0 g/cm3.+`´-

Los continentes están formados por la corteza continental, que está compuesta por rocas félsicas (silicatos de sodio, potasio y aluminio), más ligeras, con una densidad media de 2,7 g/cm3.

La frontera entre corteza y manto se manifiesta en dos fenómenos físicos. En primer lugar, hay una discontinuidad en la velocidad sísmica, que se conoce como la Discontinuidad de Mohorovicic, o "Moho". Se cree que este fenómeno es debido a un cambio en la composición de las rocas, de unas que contienen feldespatos plagioclásicos (situadas en la parte superior) a otras que no poseen feldespatos (en la parte inferior). En segundo lugar, existe una discontinuidad química entre cúmulos ultramáficos y harzburgitas tectonizadas, que se ha observado en partes profundas de la corteza oceánica que han sido obducidas dentro de la corteza continental y conservadas como secuencias ofiolíticas.

Manto


El manto terrestre se extiende hasta una profundidad de 2.890 km, lo que le convierte en la capa más grande del planeta. La presión, en la parte inferior del manto, es de unos 140 GPa (1,4 M atm). El manto está compuesto por rocas silíceas, más ricas en hierro y magnesio que la corteza. Las grandes temperaturas hacen que los materiales silíceos sean lo suficientemente dúctiles como para fluir, aunque en escalas temporales muy grandes. La convección del manto es responsable, en la superficie, del movimiento de las placas tectónicas. Como el punto de fusión y la viscosidad de una sustancia dependen de la presión a la que esté sometida, la parte inferior del manto se mueve con mayor dificultad que el manto superior, aunque también los cambios químicos pueden tener importancia en este fenómeno. La viscosidad del manto varía entre 1021 y 1024 Pa·s.4​ Como comparación, la viscosidad del agua es aproximadamente 10-3 Pa.s, lo que ilustra la lentitud con la que se mueve el manto.

¿Por qué es sólido el núcleo interno, líquido el externo, y semisólido el manto? La respuesta depende tanto de los puntos de fusión de las diferentes capas (núcleo de hierro-níquel, manto, y corteza de silicatos) como del incremento de la temperatura y presión conforme nos movemos hacia el centro de la Tierra. En la superficie, tanto las aleaciones de hierro-níquel como los silicatos están suficientemente fríos como para ser sólidos. En el manto superior, los silicatos son normalmente sólidos (aunque hay puntos locales donde están derretidos), pero como están bajo condiciones de alta temperatura y relativamente poca presión, las rocas en el manto superior tienen una viscosidad relativamente baja. En contraste, el manto inferior está sometido a una presión mucho mayor, lo que hace que tenga una mayor viscosidad en comparación con el manto superior. El núcleo externo, formado por hierro y níquel, es líquido a pesar de la presión porque tiene un punto de fusión menor que los silicatos del manto. El núcleo interno, por su parte, es sólido debido a la enorme presión que hay en el centro del planeta.

Núcleo



La densidad media de la Tierra es 5515 kg/m3. Esta cifra lo convierte en el planeta más denso del sistema solar. Si consideramos que la densidad media de la corteza es aproximadamente 3000 kg/m3, debemos asumir que el núcleo terrestre debe estar compuesto de materiales más densos. Los estudios sismológicos han aportado más evidencias sobre la densidad del núcleo. En sus primeras fases, hace unos 4 500 millones de años, los materiales más densos, derretidos, se habrían hundido hacia el núcleo en un proceso llamado diferenciación planetaria, mientras que otros menos densos habrían migrado hacia la corteza. Como resultado de este proceso, el núcleo está compuesto ampliamente de hierro (Fe) (80 %), junto con níquel (Ni) y varios elementos más ligeros. Otros elementos más densos, como el plomo (Pb) o el uranio (U) son muy raros, o permanecieron en la superficie unidos a otros elementos más ligeros.

Diversas mediciones sísmicas muestran que el núcleo está compuesto de dos partes, una interna sólida de 1220 km de radio y una capa externa, semisólida que llega hasta los 3400 km. El núcleo interno sólido fue descubierto en 1936 por Inge Lehmann y se cree de forma más o menos unánime que está compuesto principalmente de hierro con algo de níquel. Para explicar el comportamiento de las ondas sísmicas cuando atraviesan el núcleo interno, algunos científicos han inferido un ordenamiento y empaquetado atómico que sería coherente con la estructura continua de un único cristal de hierro que formara todo el núcleo interno.

El núcleo externo rodea al interno y se cree que está compuesto por una mezcla de hierro, níquel y otros elementos más ligeros. Recientes propuestas sugieren que la parte más interna del núcleo podría estar enriquecida con elementos muy pesados, con mayor número atómico que el cesio (Cs)(trans-Cesio, elementos con número atómico mayor de 55). Esto incluiría oro (Au), mercurio (Hg) y uranio (U).

Se aceptaba, de manera general, que los movimientos de convección en el núcleo externo, combinados con el movimiento provocado por la rotación terrestre (efecto Coriolis), son responsables del campo magnético terrestre, mediante un proceso descrito por la hipótesis de la dínamo. El núcleo interno está demasiado caliente para mantener un campo magnético permanente (ver temperatura de Curie) pero probablemente estabilice el creado por el núcleo externo. Pruebas recientes sugieren que el núcleo interno podría rotar ligeramente más rápido que el resto del planeta.​ En agosto de 2005 un grupo de geofísicos publicaron, en la revista Science que, de acuerdo con sus cálculos, el núcleo interno rota aproximadamente entre 0,3 y 0,5 grados más al año que la corteza.​ Las últimas teorías científicas explican el gradiente de temperatura de la Tierra como una combinación del calor remanente de la formación del planeta, calor producido por la desintegración de elementos radiactivos y el enfriamiento del núcleo interno.

Desarrollo histórico y concepciones alternativas


Teoría de Edmund Halley.

En 1692 Edmund Halley  propuso la idea de una Tierra formada por una cubierta hueca de unas 500 millas de espesor, con dos capas interiores, concéntricas, alrededor de un núcleo interno. El diámetro de las capas correspondería a los diámetros de los planetas Venus, Marte y Mercurio, respectivamente. La propuesta de Halley estaba basada en los valores de densidad relativa entre la Tierra y la Luna dados por sir Isaac Newton, en Principia (1687): «Sir Isaac Newton ha demostrado que la Luna es más sólida que nuestro planeta, 9 a 5», señaló Halley «¿por qué no podemos suponer entonces que 4/9 de nuestro planeta son huecos?».

En 1818, John Cleves Symmes, Jr. sugirió que la Tierra estaba formada por una corteza externa hueca, de 1300 km de espesor, con aberturas de 2 300 km en ambos polos. En el interior habría otras cuatro capas, cada una de ellas abierta también a los polos. Julio Verne, en Viaje al centro de la Tierra, imaginó enormes cavernas interiores, y William Reed en Fantasmas de los polos imaginó una Tierra hueca.

Algunos escritores religiosos se resistieron a la idea de una Tierra esférica, aunque no obtuvieron mucha aceptación. La Flat Earth Society (Sociedad de la Tierra Plana), anteriormente dirigida por Charles K. Johnson, trabaja duro en Estados Unidos para mantener la teoría viva, y han asegurado tener varios miles de seguidores. Algunos cristianos en Inglaterra y los Estados Unidos también intentaron revivir estas ideas.

Litosfera


La litosfera o litósfera es la capa sólida superficial de la Tierra, caracterizada por su rigidez.​ Está formada por la corteza y la zona más externa del manto, y «flota» sobre la astenosfera, una capa «plástica» que forma parte del manto superior.​ La litosfera suele tener un espesor aproximado de 50 a 100 km,2​ siendo su límite externo la superficie terrestre.​ El límite inferior varía dependiendo de la definición de litosfera que se ocupe. Para este caso, teniendo en cuenta el espesor mencionado, es la astenosfera​

La litosfera está fragmentada en una serie de placas tectónicas o litosféricas, en cuyos bordes se concentran los fenómenos geológicos endógenos, como el magmatismo (incluido el vulcanismo), la sismicidad o la orogénesis.

Definiciones practicas


En la práctica no es fácil establecer un espesor concreto para la litosfera.​ Se aplican distintas aproximaciones a:

Litosfera térmica: Bajo este concepto la litosfera constituye la parte del manto donde la conducción de calor predomina sobre la convección de calor, caso opuesto de lo que ocurre en la parte del manto que subyace la litosfera. En este sentido la base de la litosfera se puede definir según la intersección de una proyección del gradiente geotérmico con: a) alguna temperatura predefinida, b) cierta fracción de la temperatura de ambiente o c) cierta fracción del solidus del manto.​ Otro método más simple define dicho límite según la superficie de una isoterma.

Litosfera sísmica: La base de la litosfera se caracteriza por una reducción en la velocidad de propagación de las ondas S y una elevada atenuación de las ondas P. Esta definición tiene la ventaja que es fácilmente detectable a través de estudios sismológicos.

Litosfera elástica: Se llama litosfera flexural o elástica como la capa superior de la Tierra que se mueve con las placas tectónicas.​ Según esta definición la litosfera se define como rígida y con movimiento mecánico coherente.

Las litosferas térmica y sísmica tienen espesores equivalentes. En general, el espesor de la litosfera elástica es mayor a los otros dos

Actividades:

1) Responde:
¿Qué es la geosfera?
¿Cómo está compuesta la geosfera?
¿Cómo son los materiales que la conforman?
¿Se encuentran estáticos los materiales del interior de nuestro planeta?
¿Qué es el aire?
¿Es estática la superficie terrestre?

  • Cual es la parte mas solida del interior de la Tierra?
  • En cual de las capas internas de la Tierra se genera una circulacion interna de materiales?
  • Que es la litosfera?
  • Explica en un párrafo, el ciclo de Wilson


2) Lea y analice el texto

3) completa las preguntas y aprende sus respuestas. Debe de leer las paginas 10 y 11 de libro de texto o investigar para responder mejor.

4) Debe estar listo para la proxima clase


No hay comentarios:

Publicar un comentario